

# Necessary material parameter for simple simulation: strength analysis

# Strength analysis

#### Input known objects:

- solid part
- boundary condition (load, constraint, ...)

#### **Output:**

- stress and deformation on the volume of the solid part

It is necessary to know the aspects of the emergence of the force load.



## **Newton's motion laws**

- 1. NML, Velocity and inertia
- 2. NML, Forces and acceleration
- 3. NML, Action and reaction





# 1. NML, Velocity and inertia

Solid body without external forces: linear movement and constant velocity or at rest.







## 2. NML, Forces and acceleration

Force:

 $F = m \cdot a$ 



Gravity power:

$$G = m \cdot g$$

**g** ...... gravitational acceleration, (direction g ???)

3D model = V: Volume

Weight:  $\mathbf{m} = \mathbf{V}.\mathbf{p}$ 



#### Influence of the force effect:

gravitational acceleration



### 2. NML



Material without **g** does't fall. Need to suck out the material.

With **g** constantly accelerating. Speed stabilize rezistace.

Without atmosphere without resistance.

Light and heavy object on the Moon.







## 3. NML, Action and reaction

All forces between two objects exist in equal magnitude and opposite direction.

Fa = -Fr

At rest Fa+Fr=0.

Constant velocity: 1. NPZ, without external forces

Acceleration: **Fa = m.a, force from acceleration** 

