

Strength analysis

Monitored quantities:

Stress: dislocation on the 3D volume of the loaded body

Deformation: in 3D space, all directions (x, y, z)

Modulus of elasticity $\underline{\mathbf{E}}$ is defined: Elastic property of the material but in **uniaxial direction only**.

It needs parameter for determination deformation in all directions.

Deformation in the perpendicular direction to the load direction

Relative narrowing in a tensile test defined:

Poisson ratio **µ**

Ratio of relative deformations in 2 perpendicular directions.

$$\varepsilon_{a}/\varepsilon = \mu = ratio$$
, for steel about $\mu = 0.3$

Modulus of elasticity $\bf E$ and Poisson ratio μ together define the elastic properties of the material for 3D.

Material Parameters

for simple FEM task - linear static strength analysis:

```
E .... Modulus of Elasticity (material linearity)
```

μ Poisson ratio

 ρ Density

Linear static strength FEM analysis

Static: Loads and deformations are constant over time.

(time from 0 to maximal load, possible create movie)