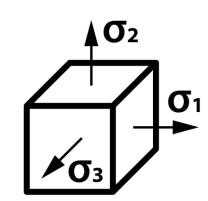
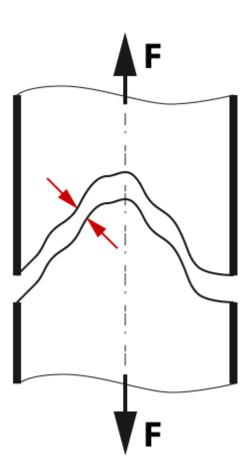


Multiaxial stress hypothesis


Allowable stress σ_d is determined from the uniaxial stress test.


There is a need the reduction for possibility to compare **uniaxial** and **multi-axis** stress in 3D space.

For this **reduction** are used **hypothesis** strength **in multi-axis stresses**.

Known hypothesis:

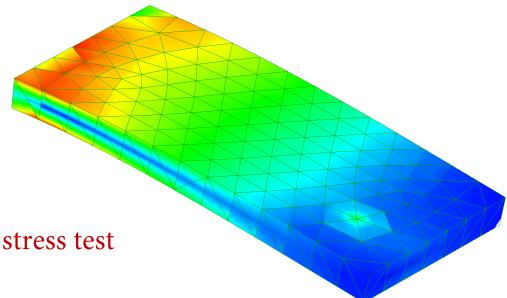
Guest, HMH, Mohr ...

Each hypothesis is better for:

- kind of material
- another combination of multi-axis stresses (bending, shear, torsion, ...)

Hypothesis HMH (Huber, von Mises, Hencky)

Basic computer simulations use the hypothesis HMH.


It is about the stress here:

specific energy of strain (density of deformation energy) to shape chance λtv .

$$\sigma_{red} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \left(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1\right)}$$

Resulting stress type HMH in computer simulation is possible comparing with allowable stress of material.

 σ_d ~ allowable stress is from the uniaxial stress test

